237 research outputs found

    Adaptation of WASH Services Delivery to Climate Change and Other Sources of Risk and Uncertainty

    Get PDF
    This report urges WASH sector practitioners to take more seriously the threat of climate change and the consequences it could have on their work. By considering climate change within a risk and uncertainty framework, the field can use the multitude of approaches laid out here to adequately protect itself against a range of direct and indirect impacts. Eleven methods and tools for this specific type of risk management are described, including practical advice on how to implement them successfully

    Destabilizing Taylor-Couette flow with suction

    Full text link
    We consider the effect of radial fluid injection and suction on Taylor-Couette flow. Injection at the outer cylinder and suction at the inner cylinder generally results in a linearly unstable steady spiralling flow, even for cylindrical shears that are linearly stable in the absence of a radial flux. We study nonlinear aspects of the unstable motions with the energy stability method. Our results, though specialized, may have implications for drag reduction by suction, accretion in astrophysical disks, and perhaps even in the flow in the earth's polar vortex.Comment: 34 pages, 9 figure

    Development of collector well gardens

    Get PDF
    Communal areas of southern Zimbabwe illustrate the problems now facing people and the environment in many semi-arid parts of Africa. Prime constraints on sustainable development are the low and erratic rainfall and the limited availability of ground and surface water resources. Rainfed crop production provides the main source of staple foodstuffs. However, increasing population densities, all too frequent droughts and declining productivity of existing croplands have led to cultivation of more marginal terrain which is better suited to other, less intensive forms of land use. In areas where sufficient water resources are available, large irrigation schemes have been constructed. However, such schemes have been beset by a wide range of technical, institutional and social problems. It has also been difficult to reconcile such schemes with traditional farming practices. In contrast, experience in the region has shown that informal or garden irrigation can be economically viable and appropriate to households, especially for women farmers, for whom it is already a traditional component of the farming system. In 1988, a programme of research was started in southern Zimbabwe, the main objectives of which were to study the feasibility of using shallow crystalline basement aquifers as a source of water for small-scale irrigation and to compare and develop methods of low-cost, high efficiency irrigation which would be suitable for use on small irrigated gardens. This paper gives a brief description of some elements of this programme. More information can be found in Lovell et al (1996) and Murata et al (1995)

    Stirring up trouble: Multi-scale mixing measures for steady scalar sources

    Full text link
    The mixing efficiency of a flow advecting a passive scalar sustained by steady sources and sinks is naturally defined in terms of the suppression of bulk scalar variance in the presence of stirring, relative to the variance in the absence of stirring. These variances can be weighted at various spatial scales, leading to a family of multi-scale mixing measures and efficiencies. We derive a priori estimates on these efficiencies from the advection--diffusion partial differential equation, focusing on a broad class of statistically homogeneous and isotropic incompressible flows. The analysis produces bounds on the mixing efficiencies in terms of the Peclet number, a measure the strength of the stirring relative to molecular diffusion. We show by example that the estimates are sharp for particular source, sink and flow combinations. In general the high-Peclet number behavior of the bounds (scaling exponents as well as prefactors) depends on the structure and smoothness properties of, and length scales in, the scalar source and sink distribution. The fundamental model of the stirring of a monochromatic source/sink combination by the random sine flow is investigated in detail via direct numerical simulation and analysis. The large-scale mixing efficiency follows the upper bound scaling (within a logarithm) at high Peclet number but the intermediate and small-scale efficiencies are qualitatively less than optimal. The Peclet number scaling exponents of the efficiencies observed in the simulations are deduced theoretically from the asymptotic solution of an internal layer problem arising in a quasi-static model.Comment: 37 pages, 7 figures. Latex with RevTeX4. Corrigendum to published version added as appendix

    Energy and enstrophy dissipation in steady state 2-d turbulence

    Get PDF
    Upper bounds on the bulk energy dissipation rate ϵ\epsilon and enstrophy dissipation rate χ\chi are derived for the statistical steady state of body forced two dimensional turbulence in a periodic domain. For a broad class of externally imposed body forces it is shown that ϵkfU3Re1/2(C1+C2Re1)1/2\epsilon \le k_{f} U^3 Re^{-1/2}(C_1+C_2 Re^{-1})^{1/2} and χkf3U3(C1+C2Re1)\chi \le k_{f}^{3}U^3 (C_1+C_2 Re^{-1}) where UU is the root-mean-square velocity, kfk_f is a wavenumber (inverse length scale) related with the forcing function, and Re=U/νkfRe = U /\nu k_f. The positive coefficients C1C_1 and C2C_2 are uniform in the the kinematic viscosity ν\nu, the amplitude of the driving force, and the system size. We compare these results with previously obtained bounds for body forces involving only a single length scale, or for velocity dependent a constant-energy-flux forces acting at finite wavenumbers. Implications of our results are discussed.Comment: Submmited to Phys. Lett.

    Dynamical age of solar wind turbulence in the outer heliosphere

    Get PDF
    In an evolving turbulent medium, a natural timescale can be defined in terms of the energy decay time. The time evolution may be complicated by other effects such as energy supply due to driving, and spatial inhomogeneity. In the solar wind the turbulence appears not to be simply engaging in free decay, but rather the energy level observed at a particular position in the heliosphere is affected by expansion, “mixing,” and driving by stream shear. Here we discuss a new approach for estimating the “age” of solar wind turbulence as a function of heliocentric distance, using the local turbulent decay rate as the natural clock, but taking into account expansion and driving effects. The simplified formalism presented here is appropriate to low cross helicity (non-Alfvénic) turbulence in the outer heliosphere especially at low helio-latitudes. We employ Voyager data to illustrate our method, which improves upon the familiar estimates in terms of local eddy turnover times

    Intermittency and regularity issues in 3D Navier-Stokes turbulence

    No full text
    Two related open problems in the theory of 3D Navier-Stokes turbulence are discussed in this paper. The first is the phenomenon of intermittency in the dissipation field. Dissipation-range intermittency was first discovered experimentally by Batchelor and Townsend over fifty years ago. It is characterized by spatio-temporal binary behaviour in which long, quiescent periods in the velocity signal are interrupted by short, active `events' during which there are violent fluctuations away from the average. The second and related problem is whether solutions of the 3D Navier-Stokes equations develop finite time singularities during these events. This paper shows that Leray's weak solutions of the three-dimensional incompressible Navier-Stokes equations can have a binary character in time. The time-axis is split into `good' and `bad' intervals: on the `good' intervals solutions are bounded and regular, whereas singularities are still possible within the `bad' intervals. An estimate for the width of the latter is very small and decreases with increasing Reynolds number. It also decreases relative to the lengths of the good intervals as the Reynolds number increases. Within these `bad' intervals, lower bounds on the local energy dissipation rate and other quantities, such as \|\bu(\cdot, t)\|_{\infty} and \|\nabla\bu(\cdot, t)\|_{\infty}, are very large, resulting in strong dynamics at sub-Kolmogorov scales. Intersections of bad intervals for n1n\geq 1 are related to Scheffer's potentially singular set in time. It is also proved that the Navier-Stokes equations are conditionally regular provided, in a given `bad' interval, the energy has a lower bound that is decaying exponentially in time.Comment: 36 pages, 3 figures and 6 Table

    On the origin of episodic accretion in Dwarf Novae

    Full text link
    We show that dwarf nova disks in quiescence have rather low magnetic Reynolds number, of order 10^3. Numerical simulations of magnetized accretion disks suggest that under these conditions magnetohydrodynamic turbulence and the associated angular momentum transport is sharply reduced. This could be the physical origin of episodic accretion in dwarf nova disks. If so, the standard disk instability model needs to be revised.Comment: 4 pages, 2 postscript figures, Latex, uses emulateapj.sty. To be published in Ap. J. Letter

    Structures of the Ets Protein DNA-binding Domains of Transcription Factors Etv1, Etv4, Etv5, and Fev: Determinants of DNA Binding and Redox Regulation by Disulfide Bond Formation.

    Get PDF
    Ets transcription factors, which share the conserved Ets DNA-binding domain, number nearly 30 members in humans and are particularly involved in developmental processes. Their deregulation following changes in expression, transcriptional activity, or by chromosomal translocation plays a critical role in carcinogenesis. Ets DNA binding, selectivity, and regulation have been extensively studied; however, questions still arise regarding binding specificity outside the core GGA recognition sequence and the mode of action of Ets post-translational modifications. Here, we report the crystal structures of Etv1, Etv4, Etv5, and Fev, alone and in complex with DNA. We identify previously unrecognized features of the protein-DNA interface. Interactions with the DNA backbone account for most of the binding affinity. We describe a highly coordinated network of water molecules acting in base selection upstream of the GGAA core and the structural features that may account for discrimination against methylated cytidine residues. Unexpectedly, all proteins crystallized as disulfide-linked dimers, exhibiting a novel interface (distant to the DNA recognition helix). Homodimers of Etv1, Etv4, and Etv5 could be reduced to monomers, leading to a 40-200-fold increase in DNA binding affinity. Hence, we present the first indication of a redox-dependent regulatory mechanism that may control the activity of this subset of oncogenic Ets transcription factors
    corecore